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Abstract. An investigation of the spin excitation spectrum of charge ordered (CO) α′−NaV2O5 is pre-
sented. We discuss several different exchange models which may be relevant for this compound, namely
in-line and zig-zag chain models with weak as well as strong inter-chain coupling and also a ladder model
and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional
exchange across the diagonals of V-ladders and the presence of exchange anisotropies on the excitation
spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted
as anisotropy effect as well as acoustic-optic mode splitting in the weakly coupled chain models. In addition
we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong
inter-chain coupling, as suggested by recent LDA + U results, an additional high energy optical excitation
appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a
spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by
inelastic neutron scattering.

PACS. 75.10.Jm Quantized spin models

1 Introduction

Transition metal-oxygen pyramids are ideal building
blocks to obtain insulators with low D structures of 3d-
ions like chains or ladders. Their localized spins exhibit
collective quantum properties at low temperatures, e.g.
spin gap formation in S = 1 chains or S = 1/2 lad-
ders. In addition there is the possibility of spin gap ap-
pearance due to the spin-Peierls (SP) mechanism which
causes dimerization of the chain. The standard example is
CuGeO3 [1]. Recently α′−NaV2O5 which has the Trellis
lattice structure with alternating shifted ladders (Figs. 1
and 6) was investigated for similar reasons: observation
of a superstructure below Tc = 33 K and subsequent
spin gap formation as witnessed by a drop of the sus-
ceptibility below Tc [2]. However it is clear now that this
compound does not exhibit a standard SP-transition be-
cause above Tc it is a homogeneous mixed valent (MV)
insulator with one 3d-electron per V-V rung. Therefore
above Tc α′−NaV2O5 is a quarter filled ladder system
with equivalent V-sites instead of a family of half filled
(atomic spin) chains. This was concluded from X-ray
[3–5] and NMR-experiments [12]. They also show that
below Tc in the dimerized state two inequivalent V-sites
exist. Therefore a charge ordering (CO) transition which
localizes the V 3d-electrons on one site of each rung of
the ladders must take place at Tc. Possible CO-structures
have been discussed by various authors [4,8,10] but so far
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the real low temperature structure remains controversial.
In general a CO transition may occur when the inter-site
Coulomb repulsion is larger than kinetic energy terms, this
is only possible in low carrier density semimetals or insu-
lators like α′−NaV2O5. Charge ordering can be viewed
as a Wigner-crystallization on a lattice [6]. This should
not be confused with the CDW transition in more metal-
lic systems. The CO-mechanism in insulating α′−NaV2O5

can be described within an effective frustraded 2D-Ising
model[8]. It leads to in-line or zig-zag charge order de-
pending on whether the difference in Coulomb repulsion,
K1−K2 between n.n. (K1) and n.n.n. (K2) is positive or
negative respectively. Later we will also discuss alterna-
tive CO structures. In reference [8] the possible origin of
spin gap formation was discussed for the in-line structure
where an induced SP transition slightly below the primary
in-line CO transition was proposed. This scenario would
naturally explain the appearance of two superposed phase
transitions from thermal expansion measurements [9] and
the observed anomalous BCS-ratio. As mentioned the zig-
zag CO is an alternative possibility, it has been discussed
in reference [10] and a related structure in reference [4]. It
has been claimed, though not discussed in any detail that
this structure leads directly to a gap in spin-excitations.

Important information on the true low temperature
CO structure may be obtained from an investigation of
the complete dispersion of magnetic excitations, especially
along a∗ (⊥ to the chain axis b). However the exist-
ing neutron scattering results [11] were rather limited in
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resolution. A special behaviour of excitations for wave vec-
tor q = (qx, π) (in units of 1

a and 1
b ) was proposed: the spin

gap mode with ∆s = 10 meV was suggested to be twofold
degenerate at qx = 0, 2π and to split into two excitations
about 2–3 meV apart for intermediate qx. This was also
discussed in a theoretical model [13]. But more recent ex-
periments with much better resolution [22] have shown
that this is definitely not true and a splitting of ∼ 1 meV
exists even at the points q = (0, π) and (2π, π). Fur-
thermore new electronic structure calculations [14] based
on the LDA + U approach have shown that there is an
additional important exchange coupling which has previ-
ously been neglected. In addition like in the cuprates small
exchange anisotropies may also lead to gaps for spin exci-
tations. Therefore it is desirable to develop a general the-
ory of magnetic excitations in α′−NaV2O5 that incorpo-
rates all these aspects and allows to calculate all possible
features of the spin excitations in the various candidate
CO-structures of α′−NaV2O5, including the effect of an
external field.

In the following the exchange model for the CO-
structures is defined (Sect. 2). For the low temperature CO
phases with intra-chain dimerization it may be mapped to
a simplified model including only relevant dimer variables
(Sect. 3). In Section 4 the spin dynamics of various ex-
change models for α′−NaV2O5 will be investigated includ-
ing exchange anisotropies and external field. The resulting
collective magnetic excitations are studied for all models
under special emphasis of the importance of intra-chain
exchange anisotropies and their influence on the mode dis-
persions perpendicular to the chain (b-) axis. Finally our
calculations and their connection to experimental results
are summarized in Section 5.

2 Electronic structure, charge order
and exchange models

In the high temperature phase (T > Tc) α′−NaV2O5 is
an insulating mixed valence compound whose electronic
structure is now reasonably well understood [5,14]. In an
effective tight binding (TB) model including only V(3d)
orbitals one has bonding (B) and antibonding (AB) bands
corresponding to the symmetric and antisymmetric molec-
ular orbitals of each V-V rung. In the following a similar
convention for the notation of TB hopping matrix ele-
ments is used as for the exchange integrals in Figures 1
and 6. The B-AB gap ∼ t̃ is about one eV and the band
widths are∼ 0.5 eV (B) and almost zero (AB). This differ-
ence has an important origin [14] which was not realized
previously: since the dispersion of B and AB bands are
proportional to t + td and t − td respectively it means
that td ' t, and hence td, the hopping across the lad-
der diagonal cannot be neglected and is necessary for a
realistic TB model of both B and AB bands. In a naive
superexchange model this would also mean that the AF
exchange constants J ∼ 2t2

U and Jd ∼ 2t2d
U should be of

the same order of magnitude. This is indeed confirmed
by spin-polarized LDA + U calculations [14] where CO

for the 3d-electrons in the V-V rungs has to be assumed.
They also show that CO α′−NaV2O5 is in an insulating
state for sufficiently large on-site U ≥ 3 eV contrary to
conventional LDA-calculations which predicts a metallic
state. As a mean field like theory with broken orbital sym-
metry the LDA + U approach does of course not describe
the true microscopic nature of the disordered MV insu-
lating state above Tc. This is still an open problem. The
transition from the high temperature MV state to the CO
state was investigated in reference [8]. It was described
within a frustrated 2D Ising model where the Ising spin
τz = ±1 denotes the 3d-electron localized on the right
or left position of the rung. In this context the CO of
Figures 1a and 1b can then be described by an order pa-
rameter 〈τz〉Q =

∑
i〈τ iz〉 exp(iQRi). For Q = 0 one ob-

tains the “ferro-” type in-line CO structure and for Q =
(π, π) the “antiferro-” type zig-zag CO structure depend-
ing whether K(0) = K1−K2 > 0 or K(Q) = K2−K1 > 0.
In this way model Hamiltonians of the effective Ising type
as in reference [8] or extended Hubbard models in Hartree-
Fock approximation [10] may be used to describe the CO
transition in a qualitative way. However it is illusory to
use such model Hamiltonians in an attempt to actually
predict the most favorable CO structure. This requires a
method like LDA + U which can provide ab initio (aside
from U) total energies of the various CO structures. It has
been successfully used for CO-phenomena in semimetal-
lic 4f -compounds [7] and may also be a powerful method
for the vanadates [14]. In this work the CO mechanism
itself is not considered. We rather start from plausible
candidate structures at low temperature and an appro-
priate exchange model. The derivation of an exchange
model for α′−NaV2O5 from an original extended Hub-
bard model was described in reference [8] and is briefly
recapitulated here. It proceeds by eliminating high en-
ergy charge fluctuations between the rungs, thus confining
one d-electron or spin within each rung. Within this sub-
space the original model may be mapped to an effective
low energy Hamiltonian containing the d-electron spin and
(Ising) pseudo-spin degrees of freedom, the latter describes
which of the degenerate V-positions in the rung is occu-
pied. This Hamiltonian is formally similar to those used
for the manganites where the pseudospin describes an or-
bital degeneracy of Mn ions. The Ising variable describes
the CO transition and for T � Tc where the intra-rung
charge fluctuations are also frozen we may replace it by its
expectation value, i.e. the CO parameter. In this way the
effective Hamiltonian reduces to an effective spin exchange
Hamiltonian only, however with an exchange constant Jnm
(n, m = V-sites) that depends on the CO parameter, i.e.
on the degree of charge disproportionation between the
inequivalent V-atoms in α′−NaV2O5. In this low temper-
ature approximation which we use here the actual size of
the CO parameter is absorbed in the exchange constants
and influences only the energy scale of the spin dynam-
ics, the form of the exchange Hamiltonian (T � Tc) is of
the usual type as for spins in a completely CO system. In
our case due to the orthorhombic symmetry it is essential
to include exchange anisotropies which may be important
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for small mode splittings as observed in α′−NaV2O5. The
model exchange Hamiltonian for the proposed CO struc-
tures in Figures 1 and 6 is then given by

H =
1
2

∑
n,m

(JxnmS
x
nS

x
m + JynmS

y
nS

y
m + JznmS

z
nS

z
m)

−gµBH
∑
n

Szn. (1)

Here Jαnm (α = x, y, z) denotes both inter- and intra-chain
couplings which may be different along the three crystal
axis a,b, c (x, y, z). Note that part of the anisotropy in
equation (1) may be due to a Dzyaloshinski-Moriya inter-
action which can be transformed away in 1D in a manner
described in reference [24] and references cited therein.
A Zeeman term with field direction perpendicular to the
vanadium ab-planes is also included to study the field de-
pendence of excitations. Which exchange couplings have
to be used depends on the CO structure, i.e. the posi-
tion of the V4+ S = 1

2 spins because exchange bonds to
V5+-ions with no d-electrons and S = 0 are irrelevant for
the spin dynamics. This is shown in Figures 1 and 6 with
sets of intra- (J , Jd) and inter-chain (J ′, J ′d, Jl) exchange
parameters (the Cartesian index α is suppressed). The for-
mer may be dimerized to J1,2 = J(1 ± δ) (Fig. 1a) and
J1,2 = Jd(1 ± δ) (Fig. 1b). This set has been enlarged as
compared to reference [8] where only J , J ′ were included.
Note that Jd and J ′ are not contributing in the in-line CO
structure of Figure 1a; J is inactive for the zig-zag struc-
ture (Fig. 1b) and J ′ is not relevant in the structures of
Figure 6. In this work we consider the following cases. (1)
Quasi-1D models either in the in-line, zig-zag or ladder CO
where the inter-chain or -ladder couplings J ′, J ′d etc. are
assumed to be much smaller than the intra-chain couplings
J , Jd or the intra-ladder J̃ . (2) A quasi-2D model where
J ′ is of the same order as J and Jd. This possibility has
been suggested by recent LDA + U results. (3) A mixed
CO/MV structure which will be discussed later. Differ-
ent methods have to be used for calculating the excitation
spectrum in these cases. Figures 1a and 1b show that J
and Jd play the same role for in-line and zig-zag quasi-
1D models respectively. Therefore one has in both cases
quasi-1D spin chains with intra-chain coupling J (in-line)
or Jd (zig-zag) coupled by small inter-chain interactions
J ′d (in-line) and J ′ (zig-zag). There is one essential differ-
ence however: in the in-line structure the CO-transition
itself does not lead to a dimerization of the chain with an
intra-chain J along b. This may be due to a secondary
SP-transition slightly below [8] leading to a dimerization
J → J(1 ± δ) with δ � 1. On the other hand CO in the
zig-zag structure may itself be accompanied by a lattice
distortion such that the two legs of the zig-zag chain have
different length leading directly to a dimerized exchange
Jd(1 ± δ). However it is possible that even in this struc-
ture the most important contribution to the dimerization
comes from the exchange energy Jd along the zig-zag legs
in Figure 1b. Irrespective of the origin of dimerization a
spin gap opens for both CO chain structures with its size
∆s(δ) depending on dimerization strength. On the other
hand if a spin ladder structure as Figure 6a is realised
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Fig. 1. Charge ordered (CO) structures of α′−NaV2O5 dis-
cussed in the text. Hatched circles: V4+ (S = 1

2
), open circles:

V5+ (S = 0). Oxygen atoms on the legs and rungs of V-ladders
are not shown. Thick lines (J1 or J̃) denote the dimer basis
of each model. (a) In-line CO with active exchange constants
J1,2 = J(1± δ) and J ′d; δ = dimerization strength along b. (b)
Zig-zag CO with active exchange constants J1,2 = Jd(1±δ), J ′
and J ′d. The ± signs denote the spin configuration with lowest
energy for the LDA + U exchange parameters. This is only
relevant for the 2D spin wave scenario of Section 4.3.

in α′−NaV2O5 a spin gap will appear already without
dimerization along b. Finally in the quasi-2D model with
strongly coupled chains and in the mixed CO/MV model
a broken symmetry spin wave (SW) calculation will show
that the spin gap can be attributed to pure anisotropy
effects.

For the single dimerized chain or the spin ladder meth-
ods based on the Jordan-Wigner transformation [15,16]
exist to investigate the excitation spectrum. However the
focus in this work is primarily on the typical behaviour of
the transverse dispersion (q ⊥ b∗) of excitations where the
influence of interchain coupling and exchange anisotropies
has to be studied. For this purpose it is necessary to use a
simple theory as starting point for the intra-chain excita-
tions (‖ b∗). It is physically appealing to use a spin dimer
representation where the presence of a spin gap is already
manifest in the local dimer basis as a singlet-“triplet”
splitting. This representation may also be mapped to the
so called bond boson model introduced in reference [17]
for spin ladders. However, for the purpose of investigat-
ing spin excitations only it is more convenient to keep
the original spin-dimer basis, especially when the effect of
exchange anisotropies on excitations is to be considered.
The basic features of the spin-dimer representation fol-
lowing reference [18] are outlined in the next section and
adapted to the relevant CO spin structures on the Trellis
lattice.



498 The European Physical Journal B

3 The local spin dimer model

In the dimerized phase of the chain models Figures 1a
and 1b or in the case of a ladder with J̃ > J (Fig. 6a) it is
a useful approach to start from a basis where the strongest
exchange pairs i.e. J(1 + δ) or J̃ respectively are diago-
nalized exactly and the weaker couplings are treated per-
turbatively in random phase approximation (RPA). This
method has first been used in reference [18] in a different
context. Presently this means the introduction of dimer
variables

Ki = S1i + S2i

Li = S1i − S2i (2)

for each pair of strongly coupled dimer spins (S1i, S2i)
where Ri denotes the positions in the dimer covering lat-
tice. Using this mapping the Hamiltonian in equation (1)
may be transformed to

H =
1
4

∑
iα

Jα1 (Kα
i K

α
i − Lαi Lαi )− gµBH

∑
i

Kz
i

−1
8

∑
〈ij〉α

Jα2 L
α
i L

α
j −

1
8

∑
〈〈ij〉〉α

Jα3 (i, j)Lαi L
α
j . (3)

Here the first and second term ∼ Jα1 describes the lo-
cal dimer energy and the Zeeman energy respectively,
the third term ∼ Jα2 denotes the n.n. dimer interactions
along the chain direction b and the last term Jα3 interac-
tions of dimers on different chains. For the two chain CO
models we have Jα1 = Jα(1 + δ), Jα2 = Jα(1 − δ) (with
Jα > 0 for AF intra-chain exchange) and Jα3 depends on
the specific model discussed. Since J and Jd play the same
role in the in-line and zig-zag model respectively we for-
mally identify Jd → J in subsequent discussions of these
two models. For the ladder model one has Jα1 = J̃α and
Jα2 ≡ Jαe = Jαd − Jα. In the Hamiltonian of equation (3)
irrelevant parts containing terms ∼ Kα

i K
α
j and Lαi K

α
j are

not included because they do not have matrix elements
from the singlet ground state to the excited states and
hence do not contribute to the dispersion of spin excita-
tions [18]. The energies and states of the S = 1

2 dimer are
given by

E1 = 0

E2 = J1 =
1
2

(Jx1 + Jy1 )

E3 = J1 − j′1 + j1 =
1
2

(Jx1 + Jz1 ) = ∆′

E4 = J1 − j′1 =
1
2

(Jy1 + Jz1 ) = ∆

|ψ1〉 =
1√
2

(| ↑↓〉 − | ↓↑〉)

|ψ2〉 =
1√
2

(| ↑↓〉+ | ↓↑〉)

|ψ3〉 =
1√
2

(| ↑↑〉+ | ↓↓〉)

|ψ4〉 =
1√
2

(| ↑↑〉 − | ↓↓〉). (4)

The ground state singlet |ψ1〉 is separated by an energy
∼ J1 from the triplet states which are slightly split by an
energies j′1 − j1 and j′1 due to the exchange anisotropies
given by j1 = 1

2 (Jx1 − J
y
1 ), j′1 = 1

2 (Jx1 − Jz1 ) where |j1|,
|j′1| � |J1|. In the isotropic case j1 = j′1 ≡ 0 the excited
states form a dimer triplet at ∆ = ∆′ ≡ J1. The dipolar
matrix elements |M i

α|2 = |〈ψ1|Lα|ψi〉|2 calculated from
equation (4) are given by |M3

y |2 = |M4
x |2 = 1 and zero else.

Therefore in the dynamical spin susceptibility uαβ(ω) of a
single dimer only E3 = ∆′ and E4 = ∆ appear as possible
dimer excitations which is obvious from the form of dimer
states |ψi〉 in equation (4). For the present zero field case
uαβ(ω) = uαα(ω)δαβ (α, β = x, y) with

uxx(ω) =
2∆

∆2 − ω2
, uyy(ω) =

2∆′

∆′2 − ω2
· (5)

Due to both intra- and inter-chain interactions the two
local dimer excitations at ∆, ∆′ will turn into disper-
sive propagating modes whose minimum energy is the
spin gap ∆s. Before we discuss this in detail in the next
section we first investigate the effect of an external field
‖ c on the dimer states described by the Zeeman term
in equation (3). Because Kz commutes with K2 one has
〈ψ1|Kz|ψi〉 = 0; i.e. no mixing of singlet and triplet states.
The only non zero matrix element is 〈ψ3|Kz|ψ4〉, therefore
the energies E1,2 and states |ψ1,2〉 will be unchanged but
E3,4 and |ψ3,4〉 become field dependent:

|ψ+〉 = u|ψ3〉+ v|ψ4〉
|ψ−〉 = −v|ψ3〉+ u|ψ4〉

u2 =
h2

h2 + [(j2
1 + h2)

1
2 − j1]2

v2 =
[(j2

1 + h2)
1
2 − j1]2

h2 + [(j2
1 + h2)

1
2 − j1]2

· (6)

The energies of the new eigenstates |ψ±〉 are given by

E+ = ∆′(h) = J1 − j′1 +
1
2
j1

1 +

(
1 +

(
h

j1

)2
) 1

2


E− = ∆(h) = J1 − j′1 +
1
2
j1

1−
(

1−
(
h

j1

)2
) 1

2
 .

(7)

In the limit h → 0|ψ±〉 → |ψ3,4〉 and E± → E3,4. The
local dimer susceptibility uαβ(ω) is now given by

uxx(ω) =
2u2∆(h)
∆(h)2 − ω2

+
2v2∆′(h)
∆′(h)2 − ω2

uyy(ω) =
2u2∆′(h)
∆′(h)2 − ω2

+
2v2∆(h)

∆(h)2 − ω2

uyx(ω) = −uxy(ω) = 2iωuv
∆(h)2 −∆′(h)2

(∆(h)2 − ω2)(∆′(h)2 − ω2)
·

(8)
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The nondiagonal part is induced by the field. Equation (8)
fully describes the local dimer magnetic response and is
the basis for the determination of the collective excitations
in the various CO structures of the Trellis lattice (Figs. 1
and 6b).

4 Collective magnetic excitations

In the previous section the effect of the largest intra-dimer
exchange interaction Jα1 has been treated exactly within
the single dimer subspace. The effect of inter-dimer ex-
change may now be treated perturbatively within random
phase approximation (RPA). In this method the collec-
tive magnetic excitations of the chain or ladder system
are given by the dynamical RPA susceptibility

←→χ (q, ω) = [←→1 −←→J (q)←→u (ω)]−1←→u (ω)

≡ ←→D −1(q, ω)←→u (ω). (9)

Here ←→u (ω) is the local dimer susceptibility tensor of
equation (8) and ←→J (q) the exchange tensor between
the dimers which depends on the specific CO-model con-
sidered, q = (qx, qy) is a wave vector in the recip-
rocal a∗b∗-plane in units of 1

a and 1
b . The tensors in

equation (9) have double indices: Cartesian α, β = x, y, z
as well as CO-sublattice λ, τ = A, B. Explicitly Jαβλτ (q) =
δαβJ

αα
λτ (q) and uαβλτ (ω) = δλτuαβ(ω). For two sublattice

CO-structures and two local dimer excitations ∆, ∆′ with
x, y polarisation one has to expect four (κ = 1−4) col-
lective excitation branches ωκ(q). They are given as poles
of ←→χ (q, ω) or zeroes of D(q, ω). Strictly speaking this
treatment is only valid when the intra-dimer exchange is
appreciably larger than the inter-dimer coupling. For ex-
ample in the dimerized chain models of Figures 1a and 1b
the limit δ → 0 is problematic because then J1 → J2 i.e.
intra- and inter-dimer exchange become equal. As shown
below, equation (9) nevertheless leads to the qualitatively
correct behaviour for the spin gap ∆s(δ → 0) → 0 al-
though with a different scaling exponent. This indicates
that the present approach is more effective than the bond-
boson theory in MF-approximation [17] which leads to a
singular ∆s for δ = 0.

4.1 Excitations for single dimerized chains

To separate the effects of intra-chain exchange
anisotropies from those of inter-chain or sublattice
coupling it is useful to analyse first the single chain case
at zero field. Then Jααλτ (q) = JααD (q)δλτ is diagonal in
the dimer sublattice basis and equation (9) factorizes for
x, y polarisation and only two modes exist. The resulting
zeroes of ←→D x,y(q, ω) are then the two propagating dimer
excitations ωx,y(q) where q = qb∗ is directed along the
chain direction. The result applies both for the single
linear chain and the zig-zag chain in Figures 1a and 1b
(with renaming Jd → J implied as explained in the

previous section). Using equation (5) and the appropriate
J(q) the mode dispersions are obtained as

ω2
x(q) =

1
2

(Jy + Jz)
[1

2
(Jy + Jz)(1 + δ)2

− Jx(1− δ2) cos 2q
]

ω2
y(q) =

1
2

(Jx + Jz)
[1

2
(Jx + Jz)(1 + δ)2

− Jy(1− δ2) cos 2q
]
. (10)

The spin gap∆s(δ) is obtained as the minimum of ωx,y(q).
The x, y-mode splitting at the q = 0 is then given by

ω2
x(0)− ω2

y(0) =
1
2

(Jx − Jy)(1 + δ)

×[(1 + δ)(∆+∆′)− (1− δ)Jz ] (11)

which is proportional to the in-plane anisotropy j1 =
1
2 (Jx − Jy)(1 + δ). If j1 ≡ 0 the x, y modes are degen-
erate which can already be seen from their corresponding
local dimer excitations E3, E4 in equation (4). For δ = 0
one has

ωx = (∆Dx)
1
2 ; Dx =

1
2

[Jy + Jz − 2Jx] > 0

ωy = (∆Dy)
1
2 ; Dy =

1
2

[Jx + Jz − 2Jy] > 0. (12)

For the uniaxial case, using Jz > Jx = Jy without
loss of generality and Dx,y = 1

2 [Jz − Jx,y] this leads to
ωx,y = 1

2 (J2
z − J2

x,y)
1
2 ≡ ∆s. In this limit the spin gap is a

pure anisotropy gap. Approaching the Heisenberg case ∆s

vanishes. It is also instructive to consider the dispersion
equation (10) directly for the Heisenberg case for δ ≥ 0:

ω2
x,y ≡ ω2(q) = 2J2(1 + δ)(sin2 q + δ cos2 q). (13)

This leads to a spin gap given by

∆s

J
= (2δ)

1
2 (1 + δ)

1
2 . (14)

For δ → 0 it vanishes like ∆s ∼ δ
1
2 . Thus the spin dimer

RPA approximation gives again a qualitatively correct be-
haviour although the δ-scaling exponent 1

2 is smaller than
the exact one [15] which is 2

3 . The dispersion equation (13)
reduces to

ω(q) = αJ sin q (15)

for the undimerized chain with α =
√

2. This is slightly
smaller than the value αDCP = π/2 for which equa-
tion (15) describes the lower boundary of the exact Des
Cloizeaux Pearson (DCP) excitation spectrum of the 1D
HAF [19]. Of course the present spin dimer theory com-
pletely misses the fact that the excitations really consist
of a free two spinon continuum since it starts from local
dimer excitations which could be interpreted as two spinon
bound states.
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Fig. 2. Spin excitations Ωκ(q) = ωκ(q)/Jz (κ = 1−4) in
the in-line structure calculated with dimer RPA-theory of
equation (19). Only Jα (α = x, y, z) and J ′d are active ex-
change constants, the former determines the large dispersion
along b∗ (qy), the latter the A-O splitting ∆AO. The spin gap
∆s is mainly caused by the dimerization δ. J ′d has no influ-
ence along paths with qy = 0, π, therefore in this model ∆a

is a pure anisotropy splitting determined by Jx − Jy and the
two split modes are dispersionless along qx. In the xy-isotropic
case ∆a = 0. Exchange parameters used are Jx = 38.4 meV,
Jy = 37.4 meV, Jz = 37.9 meV, J ′d = −6 meV and dimerisa-
tion δ = 0.034.

4.2 Excitations for weakly coupled dimerized chains,
the transverse dispersion problem

The results of the last section give confidence that the
basic properties of magnetic excitations in dimerized spin
chains are correctly described by the dimer RPA-theory.
The advantage of this approach, aside from its simplic-
ity lies in the fact that it can easily be extended to in-
clude inter-chain coupling. These couplings may lead to
transverse dispersion with q ⊥ b∗, i.e. a dependence of
excitation energy on qx in addition to the intra-chain dis-
persion or dependence on qy. As mentioned previously the
qx-dispersion may give important clues about the under-
lying CO-structure.

First we consider the zero-field case: then again
equation (9) factorizes into x, y-polarisations but now
with sublattice-exchange terms for each polarisation given
by (α = x, y)

JαAA(q) = JαBB(q) ≡ JαD(q)
JαAB(q) = JαBA(q)∗ ≡ JαN (q) (16)

where JαD, JαN refer to intra- and inter-sublattice exchange
with A, B denoting the two inequivalent dimer sublat-
tices of the CO-structures. The four magnetic excitation
branches of the planar system of chains in Figures 1a
and 1b are obtained as solutions of

1− uαα(ω)[JαD(q) ± |JαN (q)|] = 0. (17)

The choice of ± in this equation determines the frequency
of the acoustical (A) or optical (O) mode with respect to
the two sublattices.

4.2.1 In-line chain structure

We first discuss the in-line CO structure of Figure 1a. It
has exchange Fourier components

JαD(q) =
1
2
Jα2 cos 2qy

JαN (q) = −J ′αd sin qy sin
1
2

(qx + qy). (18)

Together with equation (5) the above equations lead to
the four mode dispersions

ω2
x±(q) =

1
2

(Jy + Jz)
[1

2
(Jy + Jz)(1 + δ)2

− Jx(1− δ2) cos 2qy
]

± (Jy + Jz)J ′xd (1 + δ) sin qy sin
1
2

(qx + qy)

ω2
y±(q) =

1
2

(Jx + Jz)
[1

2
(Jx + Jz)(1 + δ)2

− Jy(1− δ2) cos 2qy
]

± (Jx + Jz)J
′y
d (1 + δ) sin qy sin

1
2

(qx + qy).

(19)

An interesting aspect of this equation is that for qy = 0,
π where the excitation energy is close to the spin gap ∆s,
there is no transverse dispersion for the in-line CO model
along the lines (qx, 0) and (qx, π). The dispersion of modes
for the present case is shown in Figure 2, unfolded in the
(qx, qy)-plane. The inter-chain coupling J ′d has its largest
effect at the maximum mode energy along (qx, π2 ) where it
causes an additional acoustic(A)-optic(O) mode splitting
connected with the ± in the above equation and in addi-
tion it leads to a qx-dispersion. On the other hand when
q = (qx, 0) or (qx, π) J ′d has no effect and the observed
mode splitting in Figure 3 is dispersionless, it is not of A-
O type but has pure anisotropy character as in the single
chain case of equation (10).

4.2.2 Zig-zag chain structure

In Section 4.1 it was noted that for a single chain this
model is equivalent to the in-line structure. However it can
be seen from Figures 1a and 1b that the inter-chain cou-
pling is different in the two models. For the in-line struc-
ture a given dimer is symmetrically coupled with ± J ′d to
four dimers on two neighboring chains whereas in the zig-
zag model the coupling is asymetric with strength −J ′d,
1
2J
′. This leads now to Fourier components for the ex-

change given by

JαD(q) =
1
2
Jα2 cos 2qy

JαN (q) =
1
2
J ′α cos

(
3
2
qy +

1
2
qx

)
− J ′αd cos

(
3
2
qy −

1
2
qx

)
.

(20)
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Using equation (17) we obtain the explicit solutions (with
the formal replacement Jd → J)

ω2
x±(q) =
1
2

(Jy + Jz)
[

1
2

(Jy + Jz)(1 + δ)2 − Jx(1− δ2) cos 2qy

]
±(Jy+Jz)

[
J ′xd cos

(
3
2
qy −

1
2
qx

)
− 1

2
J ′x cos

(
3
2
qy +

1
2
qx

)]

ω2
y±(q) =

1
2

(Jx + Jz)
[

1
2

(Jx + Jz)(1 + δ)2 − Jy(1− δ2) cos 2qy

]
±(Jx+Jz)

[
J ′yd cos

(
3
2
qy −

1
2
qx

)
− 1

2
J ′y cos

(
3
2
qy +

1
2
qx

)]
.

(21)

While the intra-chain part in this expression is the same as
in the in-line model of equation (10) the second part lead-
ing to the transverse qx-dispersion is completely different.
For example taking qy = π we obtain

ω2
x−(qx, π)− ω2

x+(qx, π) =
(
J ′xd +

1
2
J ′x
)

(Jy + Jz) sin
1
2
qx

ω2
y−(qx, π)− ω2

y+(qx, π) =

2
(
J ′yd +

1
2
J ′y
)

(Jx + Jz) sin
1
2
qx. (22)

This shows that in addition to the anisotropy induced x, y-
mode splitting each of them shows a further splitting into
A, O (±)-modes which has dispersion: it vanishes at qx = 0
and is at maximum for qx = π. This situation is clearly
illustrated in Figure 3. Whether this dispersion is visible in
the experiment depends on how large it is against the pure
anisotropy splitting caused by the intra-chain exchange.
In principle both are present and Figure 3b shows two
typical possibilities. The qx dispersive A-O splitting which
is absent for qy = 0, π in the in-line case therefore in
principle offers a possibility to distinguish between both
models.

Finally we discuss the intensity variation of qy = 0, π
spin gap modes as function of total momentum transfer
κ = q + τ (q ∈ 1.BZ) mentioned in reference [11]. It was
observed that the intensity of the ~ω = 10 meV excita-
tion exhibits unexpected variation in τx with period h = 3
where τ = (2πh, 2πk, 0) is a reciprocal lattice vector in
the ab-plane. For a strictly 1D system the intensity should
rather be constant and therefore this variation possibly
points to a more 2D character of magnetic excitations.
We now analyze the intensities in the dimer RPA model
for that structure. For simplicity we neglect the additional
splitting of modes caused by xy-exchange anisotropy, i.e.
we assume Jx = Jy. Then the observed splitting along qx is
entirely an A-O splitting due to the fact that the dimer lat-
tice consists of two sublattices. In this case the intensities

0

0.5

1

1.5

Ω
κ(

q)

(π,π) (0,π) (π,π/2) (0,π/2) (0,0) (π,0)

(a)

0.2

0.25

0.3

0.2

0.25

0.3

(π,π) (0,π)(qx,π)

Ω
κ(

q)
Ω

κ(
q)

∆AO ∆a

∆AO

∆a

(b)

Fig. 3. Spin excitations Ωκ(q) = ωκ(q)/Jzd (κ = 1−4) in the
zig-zag CO structure according to equation (19) (where the
formal replacement Jd → J was made). Only Jαd , J ′ and J ′d
(Fig. 1b) are active exchange constants in this structure. (a)
In addition to the anisotropy splitting ∆a along qx there is
a further A-O splitting superposed. Which one is more pro-
nounced depends on the relative size of xy-anisotropy Jxd − Jyd
and the inter-ladder coupling J ′. In this plot Jxd = 38.2 meV,
Jyd = 37.6 meV, Jzd = 37.9 meV, J ′ = 0.5 meV, J ′d = 0 and
δ = 0.034 was used. (b) Enlarged excitation branches between
(π, π) and (0, π) for two extreme cases. above: large anisotropy
Jxd = 38.2 meV, Jyd = 37.6 meV, Jzd = 37.9 meV and small
J ′ = 0.1 meV. Below: small anisotropy Jxd = 37.95 meV,
Jyd = 37.85 meV, Jzd = 37.9 meV and large J ′ = 0.5 meV.
Other parameters in both cases as in (a). It is seen that
anisotropy splitting ∆a and A-O splitting ∆AO interchange
roles in the two cases. The situation proposed previously [11]
corresponds more to the lower part. Parameters for the disper-
sion in (a) are between these two extreme cases.

may be obtained from the dynamical susceptibilities [20]
decomposed according to

←→χ (q + τ , ω) =
1
2

(1 + cosΦ)←→χ A(q, ω)

+
1
2

(1− cosΦ)←→χ O(q, ω) (23)
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Fig. 4. Field dependence of modes at q = (0, π) for the zig-
zag CO. Exchange parameters for (1) and (2) are identical to
those of the upper and lower part of Figure 3b respectively.

where φ = τ ·ρ and ρ = (1
2 , −

1
2 ) is the vector joining the

two dimer sublattices in units of a, b respectively (Fig. 1b)
which leads to Φ = hπ − kπ. From the imaginary part of
χ(q, ω) the A, O intensities are obtained as (q ∈ 1.BZ)

IA,O(q + τ ) =
∆

2ωA,O(q)
[1± cos(hπ − kπ)] (24)

where ± corresponds to A, O respectively. In the experi-
ments [11] one has q = (qx, π) and τ given by (2πh, 0).
Neglecting the small A-O splitting, i.e. setting ωA,O(q) '
∆s one then has

IA,O(τ ) =
∆

2∆s
(1± coshπ). (25)

Two points are worth noting. The period of the intensity
is given by h = 2 and not h = 3. The intensity maxima
of slightly split A, O-modes are shifted by one half period
(h = 1). Experimentally the intensity at an energy transfer
~ω = 10 meV was measured as function of h. Since this
energy is just in between upper (O) and lower (A) mode
and both have a line width considerably higher than their
splitting the measured intensity is then the average of A
and O mode intensity. According to equation (25) however
the average is a constant independent of h, irrespective of
the period of individual A, O intensities. We conclude that
the zig-zag CO structure, at least in the dimer RPA model
for weakly coupled zig-zag chains, does neither explain the
observed intensity variation nor its period.

4.2.3 Field dependence of excitations

Investigation of the field dependence of magnetic excita-
tions may give further information on the nature of the
spin gap and its observed splitting and transverse disper-
sion. The field dependence may also be calculated from the
basic equation (9) where it enters through the local dimer

susceptibility equation (8). Due to breaking of time rever-
sal symmetry there is now a nondiagonal term uxy = −u∗yx
and both polarisations couple to each of the ∆(h), ∆′(h)
local dimer transitions. The poles of equation (9) are then
given by

1− [uxx(ω)Jx±(q) + uyy(ω)Jy±(q)]

+ [uxx(ω)uyy(ω)− |uxy(ω)|2]Jx±(q)Jy±(q) = 0. (26)

Here Jα±(q) = JαD(q) ± JαN (q) and ± has to be taken
synchronously at all positions. After straightforward but
lengthy algebra the solution of this equation leads to the
field dependent dispersions for the magnetic excitation
branches ωκ(q, h) (κ = 1−4):

ω2
κ(q) =

1
2
Bσ ±

1
2

[B2
σ(q, h)− 4Cσ(q, h)]

1
2

B±(q, h) = ∆2(h) +∆′2(h)

− 2[∆(h)Jx±(q) +∆′(h)Jy±(q)]u2

− 2[∆(h)Jy±(q) +∆′(h)Jx±(q)]v2

C±(q, h) = ∆2(h)∆′2(h)

− 2[∆(h)Jy±(q) +∆′(h)Jx±(q)]∆(h)∆′(h)u2

− 2[∆(h)Jx±(q) +∆′(h)Jy±(q)]∆(h)∆′(h)v2

+ 4Jx±(q)Jy±(q)[(∆2(h) +∆′2(h))u2v2

+∆(h)∆′(h)(u4 + v4)]. (27)

Here σ = ± and κ = (±, σ) corresponds to any of the
four possible combinations of ±-signs in the last equation.
In the quantities B± and C± the ± signs always have
to be taken simultaneously. With u(h) and v(h) given by
equation (6) and ∆(h), ∆′(h) by equation (7) the above
expressions represent the complete solution for the field
dependent dispersion of magnetic excitations in the
anisotropic coupled dimer system. These equations can
be applied to the CO structures of Figures 1 and 6a. The
specific CO determines only the exchange functions Jα±(q).
For zero field this equation reduces to the previously stud-
ied solutions of equation (17). Figure 4 shows the field
dependence of q = (0, π) modes, i.e. the spin gap modes
vs. external field for the zig-zag CO in the two limiting
cases corresponding to Figure 3b. One obtains a quasi-
linear Zeeman splitting of q = (0, π) modes in the small
anisotropy (2) case and almost field independent modes
for large anisotropy (1). The gap will close only at a very
high field which is expected since the zero field spin gap of
∆s = 10 meV is quite large. In this model it was assumed
that the dimerization δ itself shows little field dependence
since it should be a direct consequence of the lattice su-
perstructure induced by the CO.

As in the zero field case the susceptibility ←→χ (q, ω) in
equation (9) may also be used to calculate the intensity
of the four ωκ(q, h) excitation branches. They are given
by the imaginary part π−1χ⊥(q, ω)′′ where χ⊥ = 1

2 (χxx+
χyy). One obtains delta-function contributions of the type
Zκδ(ω − ωκ(q)). The intensity of each mode ωκ(q, h) can
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be obtained from equation (26) as

Zκ(q, h) = ±
(
∆+∆′

2ω±

)ω2
± − 1

2γ
Jx±(q)+Jy±(q)

∆+∆′

ω2
+ − ω2

−


γ=4[(∆2(h)+∆′2(h))u2v2+∆(h)∆′(h)(u4+v4)].

(28)

In the isotropic case with Jx± = Jy± and ∆(h) = ∆′(h)
this reduces to a simple formula for the two (A, O) modes
(σ = ±):Zσ(q, h) = ∆(h)/ωσ(q, h) which corresponds to
the prefactor of the zero field result in equation (25), the
variation with τ is suppressed here. Within the field range
of Figure 4 there is only a few per cent change of the
corresponding mode intensity.

4.3 Excitations in strongly coupled chains

One reason for focusing on 1D chain models for the mag-
netic excitations of α′−NaV2O5 was the observation of
quasi-1D temperature dependence of the susceptibility in
the MV phase above Tc. This was attributed to d-electrons
localised in the molecular bonding orbitals of each V-V
rung having strong exchange J along the ladder and weak
exchange J ′ between them. This picture was qualitatively
supported by by LDA-calculations [5] mapped on an ef-
fective 3d-tight binding (TB) model which lead to very
small hopping matrix elements t′ � t suggesting that
J ′ = 4t′2

U � J = 4t2

U in a simple superexchange picture.
However a recent LDA + U analysis [14] with a mapping
to an extended TB-model including both V3d and O2p
orbitals has seriously questioned this picture for the low
temperature CO phases. In this calculation the mapping
of LDA + U total energies of various CO and spin polar-
ized states to that of a corresponding Heisenberg model
enables one to calculate realistic values for the most im-
portant exchange constants. It turns out that in the CO
phase J ′ is only about a factor of two smaller than Jd
and this “diagonal” ladder exchange is even bigger than
the exchange J along the leg of the ladder. Furthermore
surprisingly even the J ′d exchange constant is not negligi-
ble and both J ′ and J ′d are ferromagnetic. For a realistic
value of U = 3 eV the exchange constants have values
as given in the caption of Figure 5. The reason for the
large J ′ in the CO structure as compared to the homo-
geneous MV state lies in the change of pd-hybridisation
due to the shift of 3d-levels on inequivalent V-atoms [14].
If this LDA + U result for the exchange corresponds to
the real situation then CO α′−NaV2O5 is magnetically
more like a 2D system with strong AF coupling along the
ladder diagonals and legs and almost equally strong FM
coupling between the ladders. Such a model is very differ-
ent in principle from the 1D models discussed sofar. We
now also investigate its magnetic excitations and origin
of the spin gap which is different from the dimerization
mechanism in this model. This is also partly motivated
by the fact that according to reference [21] there is in-
deed no intra-chain dimerisation in the low temperature
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Fig. 5. Spin excitations for the 2D exchange scenario described
in Section 5. The SW results of equation (33) has been used.
The exchange parameters are basically those from LDA + U
calculations (U = 3 eV) [14] for the spin polarized zig-zag
CO structure of Figure 1b, except for a slightly larger J ′d
and the additional anisotropies which have been introduced
to obtain spin gap ∆s and anisotropy splitting ∆a. Explicitly
we use Jxd = 34.5 meV, Jyd = 35.2 meV, Jzd = 36.2 meV,
J ′ = −17.8 meV, J ′d = −6 meV. In the SW picture the dimer-
ization does not lead to a spin gap and was set to zero. ∆s

is mainly determined by the (xy)-z anisotropy and ∆a by the
in-plane xy-anisotropy. The large ∆AO-gap is caused by the
large J ′ in this parameter set.

structure as assumed in the previous models. Naturally
the dimer approach of previous sections is not possible
for the zig-zag CO structure with its very large interchain
coupling J ′. On the other hand there is no problem for
the in-line structure since J ′ is inactive in this case and
even the appreciable J ′d obtained from LDA + U does not
affect the dispersion very much since it is effective only
at the maximum energy and does not influence the spin
gap as shown in Figure 2. For the zig-zag CO instead we
now start from a broken symmetry ground state with a
spin configuration as indicated in Figure 1b which has the
lowest ground state energy E = J′

8 −
J′d
4 −

Jd
4 . Of course

this approach does not describe the real ground state of
α′−NaV2O5 which is nonmagnetic, nevertheless the exci-
tation spectrum can be expected to have realistic features.
The spin state consists of four magnetic sublattices A↑,
B↑, A↓, B↓. The molecular field for the sublattices λ is
given by ∆(↑) = −∆(↓) ≡ ∆ with

∆ = 〈S〉[J ′z − 2J ′zd − 2Jzd ]. (29)

As in the previous models we include anisotropies in the
largest exchange Jαd although its magnitude has not yet
been calculated in LDA + U which was applied with-
out spin-orbit coupling [14]. Without loss of generality
we assume that the spins are oriented along the c-axis,
i.e. Jzd > Jx,yd . Furthermore 〈S〉 is the saturation moment
equal to 1/2 at T = 0. The RPA equation for the spin
wave (SW) modes is formally the same as equation (9)
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but the dynamical variables are now the individual spins
and not the dimer excitations. Therefore instead of equa-
tion (5) for the dynamical suscepibilities we have now
uxx(ω) = uyy(ω) ≡ u(ω) and uyx(ω) = uxy(ω)∗ ≡ v(ω)
with

u(ω) =
〈S〉λ∆λ

∆2
λ − ω2

v(ω) = i
〈S〉λω
∆2
λ − ω2

(30)

where 〈S〉λ = ±〈S〉 and ∆λ = ±∆ for λ =↑, ↓ sublattices.
Furthermore the exchange Fourier transforms ←→J α

D,N (q)
(α = x, y, z) are now tensors defined in the original spin
lattice (↑, ↓ sublattices) instead of the dimer covering lat-
tice. The various components connecting the four sublat-
tices can be read off from Figure 1b, e.g. JD↑↑ = J ′(q)
etc. with

J ′(q) = J ′ exp i
1
2

(
1
3
qx − qy

)
J ′d(q) = 2J ′d cos

1
2

(qx + qy)

Jd(q) = 2Jd exp
(
−1

3
qx

)
[cos qy − iδ sin qy]. (31)

Here δ � 1 is the dimerization of the zig-zag chain which
may exist due to the low symmetry of the corresponding
CO structure. After some algebra the complete RPA spin
wave solution of equation (9) applied to the present case
consists of four branches (κ = 1−4) which are given by
ω̂κ = ωκ/〈S〉 with

ω̂2
κ(q) = (c′1±̂d′1)

±
{

(c′1±̂d′1)2 − [|c1|2 + |d1|2 − |c2|2 − |d2|2

±̂(c1d∗1 + c∗1d1 − c2d∗2 − c∗2d2)]
} 1

2

c1 = ∆̂2 + J ′xJ ′y∗ − (J ′xd J
′y
d + Jxd J

y∗
d )

c2 = −∆̂(J ′x + J ′y)− (Jxd J
′y
d + JydJ

′x
d )

d1 = ∆̂(J ′xd − J
′y
d ) + J ′xJy∗d − J ′y∗Jxd

d2 = ∆̂(Jxd − J
y
d ) + J ′xJ ′yd − J ′yJ ′xd . (32)

Here ∆̂ = ∆/〈S〉 and c′1 = (c1 + c∗1)/2, d′1 = (d1 + d∗1)/2
denotes the real part of these functions. Note that the
variable q was suppressed in J ′(q), J ′d(q) and Jd(q) in
the above expressions for simplicity. The signs ±̂ with a
hat have to be taken simultaneously with upper or lower
value wherever they appear thus leading to four spin wave
branches. Again it is useful to consider the solutions for
the single chain case only, i.e. setting J ′ = J ′d ≡ 0. Then
equation (32) reduces to ω̂2

κ = c′1 ± |d2| or

ω̂2
±(q) = [∆̂±̂2Jxd γq][∆̂∓̂2Jyd γq]

γq = (cos2 qy + δ2 sin2 qy)
1
2 . (33)

Each branch is twofold degenerate since there is no A-O
splitting without inter-chain coupling. At zero wave vector
one has for Jd > 0, using 2〈S〉 = 1:

ω+(0) = [Jzd − Jxd ]
1
2 [Jzd + Jyd ]

1
2 ' (2jxd J̄d)

1
2

ω−(0) = [Jzd + Jxd ]
1
2 [Jzd − Jyd ]

1
2 ' (2jyd J̄d)

1
2 (34)

with jx,yd = Jzd −J
x,y
d and J̄d = (Jxd +Jyd +Jzd )/3 denoting

the exchange anisotropy and average respectively.
This shows that in the SW approximation the spin

gap ∆α
s = (2jαd J̄d)

1
2 is entirely an anisotropy gap and

independent of CO induced dimerization. Indeed in the
isotropic case ω(q) = 2〈S〉Jd(1 − δ2)

1
2 sin qy. The dimer-

ization does not remove the gapless excitations but only
changes slightly the spinwave velocity. Therefore not sur-
prisingly for isolated dimerized isotropic HAF chains the
SW RPA approximation is qualitatively incorrect and the
dimer RPA approach of previous sections should be used.
However when interchain couplings J ′, J ′d become larger
than Jdδ the situation is reversed and the SW approxi-
mation of equation (32) is a better starting point for the
essentially 2D magnetic system. This is certainly the case
when one uses the exchange parameters obtained from
LDA + U where due to |J ′/Jd| ' 0.5J ′ is much larger
than Jδ with a δ = 0.034 estimated from the spin gap in
the dimer model.

The SW excitation branches for the 2D exchange
model as obtained from the LDA + U parameters are
shown in Figure 5. The size of the anisotropy which is not
determined by LDA + U is fixed by the size of the spin
gap of ' 10 meV as suggested by equation (34). For zero
anisotropy one would get a Goldstone mode (A-branch)
also for the 2D model. Thus the anisotropy and not the
CO induced dimerization of the Jd exchange is the origin
of the spin gap in this 2D model. Figure 5 exhibits a pair
of two strongly split A, O modes where the splitting is
approximately given by [J ′(J ′−2Jd)]

1
2 . Both modes show

a small additional splitting caused by the xy-exchange
anisotropy of Jαd ; if it vanishes the A and O modes are
twofold degenerate throughout the BZ. This fact is well
known already from the simple (two magnetic sublattice)
AF where only A modes exist and the degeneracy can
simply be understood as a result of the downfolding into
the AF BZ. The A-modes are nearly dispersionless along
qx because the effect of the AF Jd and the FM J ′d nearly
cancel along this direction. The behaviour of the A-modes
around the (0, π)-point with their splitting increasing to-
wards (π, π) is qualitatively very similar to the two modes
in the dimer model with weakly coupled chains (Figs. 2
and 3). Note however that the role of A-O splitting and
anisotropy splitting are reversed. It is the latter which
now leads to the dispersion of the small A-mode splitting
whereas the A-O splitting is now much larger. The exis-
tence of the high energy split- off O-branch is an essential
prediction of this 2D model and could be tested directly
experimentally. The flat part of the O-branch lies at about
an energy given by ωO ' [J ′(J ′−2Jd)]

1
2 ' 30 meV roughly

twice the maximum energy investigated so far [11].

4.4 Excitations in Ladder and partly mixed valent
structures

Recently a model for the lattice distortion caused by
the charge ordering below Tc has been proposed based
on low temperature X-ray scattering [21]. According to
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Fig. 6. (Partly) charge ordered (CO) structures of
α′−NaV2O5 discussed in Section 4.4. Hatched circles: V4+

(S = 1
2
), open circles: V5+ (S = 0). Hatched ellipse: V4.5+

MV state of V-V rung. Oxygen atoms on the legs and rungs
of V-ladders are not shown. (a) Ladder CO consisting of iso-
lated S = 1

2 ladders with active exchange constants J , J̃ and
Jd. (b) Partly zig-zag CO/MV structure. Intra-chain exchange
J1,2 = Jd(1 ± δ) is dimerized perpendicular to the chain un-
der the assumption of the low temperature distortion pattern
(arrows) proposed in reference [21]. Next neighbor chains are
coupled by Jl. The hatched ellipse denote one d-electron in
the molecular state of the rung, i.e. the V-atoms have formal
valence 4.5. A similar CO structure (symmetric to the MV lad-
der) is also possible where the CO pattern on the right ladder
is shifted along b (chain direction) by one rung. Exchange path
for Jl is then perpendicular to b.

this model only every second ladder in Figure 1c is dis-
torted perpendicular to the chain (b-) direction with a pe-
riod of 2a along the (a-) direction. It is not immediately
obvious which CO structure is compatible with this dis-
tortion pattern but the simple in-line and zig-zag model
cannot easily be reconciled with the curious fact that every
second V-ladder of the Trellis lattice is undistorted. Two
possible models which incorporate this fact have been pro-
posed and are shown in Figure 6. (i) CO structure of the
spin ladder type [21,22] where two V(3d) electrons occupy
every second rung and the other rungs have no V(3d) elec-
trons. This ladder model is therefore completely different
from the chain models which have only one 3d-electron
for every rung. It seems rather surprising that the lad-
der structure should be realized since LDA + U calcula-
tions [14] indicate that it has a much higher total energy
than the chain structures. (ii) Structure with alternating
CO zig-zag chains and disordered chains [23]. Here half of
the ladders have zig-zag CO like in Figure 1b but the other
half remains in the disordered mixed valent state. This is

again a structure with only one d-electron per rung on the
average and therefore it will have a total energy not too
different from the CO structure of Figure 1b.

We discuss first the magnetic excitations in the ladder
structure in qualitative terms assuming an AF superex-
change J̃α of spins within the ladder rungs via the in-
tervening oxygen. In this structure there is no connection
between the spin gap and the doubling of periodicity along
b since it appears already in the undimerized (equidistant)
ladder. Essentially one deals with single ladder excitations
in this case because the magnetic S = 1

2 V4+ ladders are
separated by nonmagnetic S = 0 (V5+) ladders. There is
another important difference to the chain structures: the
doubling of the periodicity of the lattice (period 2b) does
not show up in the spin ladder which still has periodicity b
as seen in Figure 1c, this has drastic consequences for the
excitations. In the present case the local dimer suscepti-
bility is determined by the states of the rung-dimer with
interaction J̃α (Fig. 1c) and it may be obtained by replac-
ing ∆→ 1

2 (J̃y+ J̃z) and ∆′ → 1
2 (J̃x+ J̃z) in equation (5).

Using equation (17) which also holds for the present case
we obtain for the two excitation branches (there is no A-O
splitting in this case):

ω2
x(q) =

1
2

(J̃y + J̃z)
[

1
2

(J̃y + J̃z)− 2Jxe cos qy

]
ω2
y(q) =

1
2

(J̃x + J̃z)
[

1
2

(J̃x + J̃z)− 2Jye cos qy

]
. (35)

The most important aspect of these excitations is the dou-
bling of the periodicity 2π along the ladder instead of
π for the chain models. In the latter the points qy = 0
and qy = π are degenerate and their excitation energy is
at (or close) to the minimum, i.e. equal to the spin gap
(Figs. 2 and 3). On the other hand for the ladder struc-
ture assuming Jαe = Jαd − Jα < 0 the excitation energy
is equal to the spin gap only for qy = π, whereas it is
at the maximum in the zone center (qy=0) for AF effec-
tive inter-(rung) dimer exchange Je. The possibility of the
spin ladder model can therefore in principle be directly ex-
perimentally investigated. Finally the splitting along the
transverse qx direction will be constant and determined
by the exchange anisotropy as in the in-line chain case.

The more recent proposal [23] of an alternating
CO/MV low temperature structure of α′−NaV2O5 which
is shown in Figure 6b is a very interesting possibility
and deserves a detailed analysis of its magnetic excita-
tion spectrum. In this structure CO zig-zag chains alter-
nate with ladders in the MV state along the a-axis. In
both we have one d-electron per rung on the average but
in the MV ladders the electron is not localised on one of
the two V-positions of the rung but resonates, i.e. it is
in the molecular bonding state of the two V-atoms. This
means there are three types of V-sites with formal valen-
cies Z = 4 or 5 on the CO zig-zag chain and Z = 4.5 on the
MV ladder. Whether the existence of three inequivalent V-
sites is compatible with NMR results [12] is not clear. To
describe the magnetic excitations in such an inhomoge-
neous state we make a drastic but reasonable assumption.



506 The European Physical Journal B

Since the d-electrons residing in the molecular orbitals are
spread out over the whole rung, their spin response will be
concentrated around zero total momentum transfer con-
trary to the atomic spins on the CO zig-zag chains where
the magnetic scattering intensity varies with the atomic
form factor. Therefore the contribution of the spins in the
molecular orbitals to the scattering cross section should be
negligible at large momentum transfer and consequently
only the atomic spins residing on the zig-zag chains will be
included in the model exchange Hamiltonian for the struc-
ture of Figure 6b. This model Hamiltonian has only two
(in general anisotropic) exchange constants: intra-chain
Jαd similar as in the zig-zag model of Figure 1b and inter-
chain coupling Jαl which connects V4+ spins on next near-
est ladders via a superexchange path across the interven-
ing MV (non-magnetic) ladder. Note that in principle the
lattice distortion in which was described in the beginning
of this section implies a dimerization J1,2 = Jd(1 ± δ) of
the intra-chain Jαd along the a-direction. This means that
the intra-chain exchange within a given zig-zag chain is
Jd(1 + δ) and Jd(1 − δ) on two adjacent zig-zag chains
separated by a MV ladder (Fig. 6b). This type of dimer-
ization therefore leads to a doubling of the unit cell of the
exchange Hamiltonian along a whose consequences we will
discuss later. Note that it does not lead to an alternating
exchange within a given zig-zag chain and hence not to a
dimerization gap in the excitations of the isolated chain.
For this reason it is possible to start from a Néel ground
state and use the spin wave approximation even though
we consider now weakly coupled zig-zag chains. Formally
the SW-calculation is very similar to that performed in
Section 4.3 and we do not repeat the details. The Fourier
components of the exchange entering the dynamical sus-
ceptibility χ(q, ω) may be read off from the structure in
Figure 6b and are given by

Jαd (q) = 2Jαd cos qy exp
(

i
3
qx

)
Jαl (q) = 2Jαl cos qy exp

(
2i
3
qx

)
. (36)

The spin wave branches are then again obtained from
the poles of χ(q, ω) which leads to the secular equation
detχ(q, ω) = 0. In this equation the dimerization δ(‖ a)
appears only in O(δ2) and if these terms are neglected for
the moment we obtain the four spin wave branches in the
small BZ (|qx| ≤ π

2 ) as

ω2
κ(q) = [(Jz2d −Jxd Jyd )+Jxd J

y
d sin2 qy]±Jzd (Jyd −Jxd ) cos qy

± Jl(Jxd + Jyd ) cos2 qy cos qx. (37)

Here ± signs are chosen independently and therefore κ =
1−4. For the isolated chain with uniaxial exchange (Jl =
0, Jxd = Jyd ≡ Jd) this reduces to a single dispersion

ω2(qy) = ∆2
a + J2 sin2 qy (38)

with the Ising anisotropy spin gap ∆2
a = (Jz2d − J2

d ) '
2Jzd (Jzd − Jd). In the Heisenberg case ∆a=0 and one ob-
tains the dispersion equation (15) but now with αSW = 1

which is smaller than the values of α in the dimer approx-
imation and in the exact result (see below Eq. (15)). For
Jxd 6= Jyd there are two anisotropy gaps ∆±a .

We now focus on the most interesting part of the trans-
verse dispersion along qx of the coupled chain system. For
qy = 0 (or qy = π, this leads only to an interchange of
modes) one obtains in the large BZ (|qx| ≤ π) two un-
folded modes given by

ω+(qx) = ∆+
a − δ+ cos qx

ω−(qx) = ∆−a − δ− cos qx (39)

with ∆±2
a = 2Jzd (Jzd − J

x,y
d ) and δ± = (JdJl)/∆±a . In de-

riving equation (39) from to equation (37) we assumed
that δ± � 1. These spin wave dispersions are equivalent
to the recently proposed empirical dispersion relations [22]
obtained by new inelastic neutron scattering results which
had much higher resolution than those performed in
reference [11]. The above formulas provide an excellent
fit to the experimental dispersions as shown by Regnault
et al. in reference [22] with parameters obtained there
as ∆+

a = 10.65 meV, ∆−a = 8.75 meV, δ+ = 0.4 meV,
δ− = 0.5 meV. Note that this dispersion proposed by
Regnault et al. [22] and derived in the present model
has only half the period in qx as compared to the pure
zig-zag model of Figure 1b and equation (21). Using the
empirical parameters from above and equation (39) one
may completely determine the relevant parameters in the
present theoretical model: Jzd = 38 meV, Jl = 0.11 meV
for intra- and inter-chain exchange respectively and for the
intra-chain anisotropies we have Jz − Jx = 1.49 meV and
Jz−Jy = 1 meV. Note that our model result for δ± below
equation (39) requires δ+/δ− = ∆+/∆−. Experimentally
δ+/δ− = 0.80 and ∆+/∆− = 0.82 which is close to ex-
pectation. The dispersion obtained from equation (37) (or
approximately from Eq. (39)) with these parameters is
shown in Figure 7. Finally we comment on the question
of intensities. Since we have two chemical sublattices sep-
arated by d = 2

3a + b (Fig. 6b). and only sublattices of
opposite spins are coupled in pairs the intensities will be
given by a similar expression as in equation (23):

IA(τ ) ∼ 1
2

(
1 + cos

(
2π
3
h

))
= cos2

(π
3
h
)

IO(τ ) ∼ 1
2

(
1− cos

(
2π
3
h

))
= sin2

(π
3
h
)
. (40)

In this case then the period of the intensity variation is
correctly given by h = 3 as observed experimentally con-
trary to the zig-zag model of Figure 1b.

Sofar the dimerisation δ along a leading to Jd →
(1 ± δ)Jd has been neglected. If included it would lead
to an opening of an additional gap at the points qx = ±π2
of size 2δ∆a as shown in Figure 7. Sofar this dimeriza-
tion gap has not been identified. It is not clear whether
the resolution is still too small or whether the inter-chain
exchange dimerization Jd(1 ± δ) of next neighbor zig-zag
chains as shown in Figure 6b is indeed negligible. Another
possibility is that a similar (symmetric) CO/MV struc-
ture as mentioned in the caption of Figure 6b is realized
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Fig. 7. Spin wave dispersion ωκ(q) along qx for qy = 0, π
unfolded in the large BZ corresponding to the undistorted
structure. Gapless curves: modes for zero dimerisation accord-
ing to equation (37), gapped curves: modes with perpendicular
dimerization according to Figure 6b with δ = 0.01. This leads
to small gaps at the boundary (±π2 ) of the small BZ corre-
sponding to the distorted structure. Exchange parameters and
anisotropies have been chosen to comply with the experimen-
tally determined dispersion by Regnault et al. [22] and given
in the text of Section 4.5.

for which δ = 0. In this structure, in the last terms of
equations (36, 37) cosy has to be replaced by one but the
experimentally relevant equation (39) is unchanged.

5 Summary and conclusion

We have proposed and analyzed a number of spin-
excitation models that may be relevant for inelastic neu-
tron scattering investigations in the CO low tempera-
ture phase of α′−NaV2O5. The most frequently discussed
models are based on in-line or zig-zag chain CO and as-
sume that the exchange coupling along the chains is much
smaller than between the chains. In these models there
is a strong dispersion along the chain axis b∗ caused by
the exchange coupling along the legs (in-line J) or ladder
diagonals (zig-zag Jd). Recent LDA + U calculations [14]
suggested that both are of the same order of magnitude.
Therefore even in the completely CO zig-zag structure
there is a strong dispersion ‖ b∗(qy). The minimum ex-
citation energy, i.e. the spin gap ∆s in this scenario is
due to a dimerization J(1 ± δ) or Jd(1 ± δ) of the intra-
chain exchange. The dispersion ‖ b∗(qx) on the other
hand is comparatively small. However it shows character-
istic differences for the two quasi-1D models. Allowing for
small anisotropies in the largest exchange J or Jd we find
that (1) the in-line model has a qx-dispersionless split-
ting of the spin gap mode for qy = 0, π determined by
the exchange anisotropy alone. The inter-chain coupling
may only contribute to the qx-dispersion at the maximum
mode energy at qy = π

2 . This is a direct consequence

of the Trellis lattice structure with every second ladder
shifted by b

2 . (2) in the zig-zag model the splitting of the
qy = 0, π spin gap modes has both a contribution from
exchange anisotropy Jxd − J

y
d and inter-chain coupling J ′.

Depending whether the former or latter is stronger one
has little or noticeable dispersion along qx and the role of
anisotropy splitting and A-O splitting are interchanged.
It was also shown that the magnetic field behaviour in the
two limiting cases of the zig-zag model (Fig. 4) is differ-
ent. While for J ′ appreciably larger than Jx − Jy there
is an almost linear Zeeman splitting of spin gap modes,
they are almost field independent for small fields in the
opposite case. In addition we discussed the zig-zag CO
model in the case of strong coupling between the zig-zag
chains because LDA + U calculations predict a surpris-
ingly large inter-chain coupling J ′ in this CO-structure.
In this case we used a broken symmetry approach to cal-
culate the spin excitations. In this model the spin gap is
a pure anisotropy gap, furthermore one obtains a split-off
optical branch at an energy of 30 meV. The observation of
such a mode would be crucial for this model, sofar there
is no experimental evidence that it exists.

Furthermore we briefly discussed the alternative spin
ladder model of Figure 6a with AF coupling in the lad-
der rungs. It was found that the dispersion along qy has
twice the periodicity as compared to the in-line and zig-
zag chain models.

Perhaps the most promising model investigated is the
mixed CO/MV model with zig-zag chains separated by
disordered (MV) ladders. This structure model has been
proposed in reference [23] and we have shown that it leads
to spin wave dispersions exactly as those empirically pro-
posed by Regnault et al. [22] from new inelastic neutrons
scattering results. Most importantly it shows half the pe-
riod for the dispersion along qx as compared to the other
models and also has the proper intensity variation. In this
model the spin gap is due to a predominately Ising type
exchange anisotropy and the dimerization perpendicular
to the chains has only little effect.

All models discussed account for the basic qualitative
properties of the available neutron scattering results [11]:
(1) slightly split spin gap modes at ∆s = 10 meV with lit-
tle or no dispersion along qx and (2) a large dispersion of
magnetic excitations along the chain (qy)-direction. What
is different in the models is the interpretation of the origin
of various gaps and splittings observed, i.e. whether they
are due to dimerization, anisotropy, ladder type or of A-O
nature. To make further progress in discriminating be-
tween these models (and possibly others not investigated
here) and also to obtain a more reliable set of exchange pa-
rameters for them it is necessary to have inelastic neutron
scattering results in a larger energy and momentum region
and with enhanced resolution and also a more detailed in-
formation on the momentum dependence of the intensity
for each individual mode. The investigation in this paper
has given a clear classification of the typical signatures of
the different exchange models one has to look for.
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